

CIVIL-309: URBAN THERMODYNAMICS

Assist. Prof.
Dolaana Khovalyg

Lecture 11:

Urban Renewable Energy Sources

EPFL Course Schedule

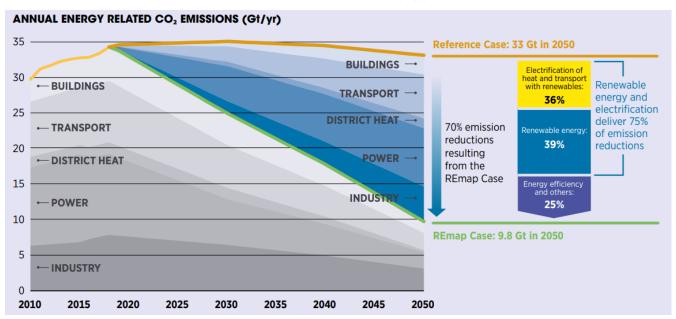
Week	Date	Time	ID	Topics	Responsible
12	25.11	2 x 45'	L9	Human Outdoor Comfort: Parameters affecting human	DK
				comfort and comfort indices (UTCI, PET)	
		1 x 45'	P9	Group work – simulation practice based on L9:	KL
				methods to calculate thermal comfort indices from ENVI-	
				met simulation, dynamic thermal comfort simulation	
13	02.12	3 x 45'		Intermediate presentations of group projects	DK, KL
14	09.12	2 x 45'	L10	Climate-Sensitive Urban Design: complex interaction	KL
				of all urban elements and their effect on UHI and outdoor	
				environmental quality	
		1 x 45'	P10	Group work – simulation practice based on L10:	KL
				developing an integrated solution in ENVI-met for the	
				climate-sensitive urban design	
15	16.12	2 x 45'	L11	Urban Energy (renewable energy sources in cities).	DK
				Summary of the course.	
		1 x 45′	P11	Group work - finalizing the analysis and the report	KL

EPFL Deadlines

- Deadline for all submissions: January 10, 2025 (12:00)
 - 1. Submit your group projects: email your PDF files to dolara.khovalyg@epfl.ch, indicate "CIVIL-309_Group # report" in the email subject (# your group number)
 - 2. Complete the on-line course evaluation on Moodle: already open!
 - 3. Submit your peer-evaluation: everyone should complete the following *confidential* surveys according to their group number
 - Group 1: https://forms.gle/UZFqJLRWCxqLa57b9
 - Group 2: https://forms.gle/aAT9GiGgynEQNaJB9
 - Group 3: https://forms.gle/4wLNHZRwaSQZLwoA6
 - Group 4: https://forms.gle/rWP76fpuom7cCK989
 - Group 5: https://forms.gle/PRhTPy9WckzaqVyz6
 - o Group 6: https://forms.gle/QdCs9QSNa6SHC9oZ8
 - Group 7: https://forms.gle/EhXv7pa8qgQ4ww9y9
 - Group 8: https://forms.gle/eBRjqY1BRbUsndfQ8
 - Group 9: https://forms.gle/CBFP6Nar9GKzGVSv6
 - Group 10: https://forms.gle/8VuSgLU6o5Y6TrZb9

CONTENT:

Urban Renewable Energy Sources:


- Introduction
- Solar energy (PV and solar thermal)
- Wind energy
- Geothermal energy
- Hydropower
- Open issues

EPFL Renewable Energy Sources

- Renewable energy: energy obtained from natural and persistent sustainable sources of energy <u>available in</u> <u>the environment</u>. They are not depleted by the use (e.g. solar energy, hydroelectric, wind, and geothermal).
- Renewable energy currently accounts for only ~ 20% of urban energy use, with around 2/3 in the buildings sector and 1/3 in transportation (IRENA, 2016).

- Approximately 40% of the global energy is used by the industry, 40% by commercial and domestic consumers, and 20% in transport.
- The use of renewable energy is a necessity, as with the current rate of energy use, fossil fuels will be exhausted by the end of the 21st century.

What types of renewable energy can be harvested in the urban environment? Pick top 3 energy sources

Please login:

responseware.eu

Session ID: CIVIL309

- A. Biomass energy
- B. Geothermal energy
- C. Wind energy
- D. Solar energy
- E. Hydro power

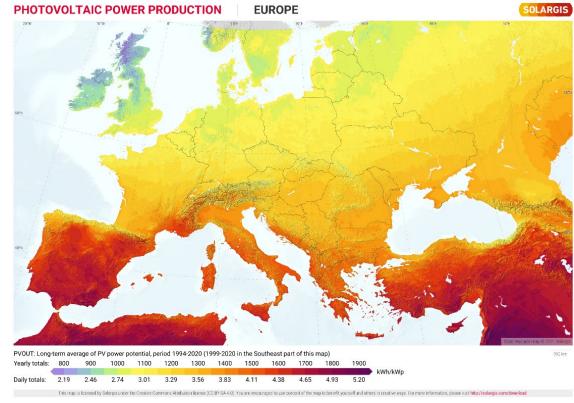
Name the main challenges of harvesting renewable energy in cities

Please login:

responseware.eu

Session ID: CIVIL309

CONTENT:


Urban Renewable Energy Sources

- Introduction
- Solar energy (PV and solar thermal)
- Wind energy
- Geothermal energy
- Hydropower
- Open issues

CIVIL-309 / LECTURE 11

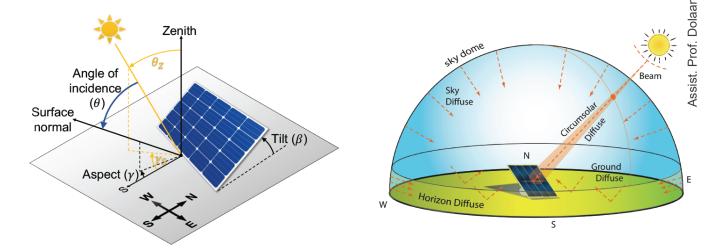
EPFL Urban renewable energy sources: **Solar**

- Solar energy has a relatively small energy flux density in Europe $< 500 \, \frac{W}{m^2}$, large surfaces are required to harness it.
- The two existing solar collecting systems:
 - Solar photovoltaic (PV) to produce electricity
 - Solar thermal to produce thermal energy

EPFL Building integrated solar systems

CIVIL-309 / LECTURE 11

Photovoltaics: BIPV Façades and Roofs EPFL

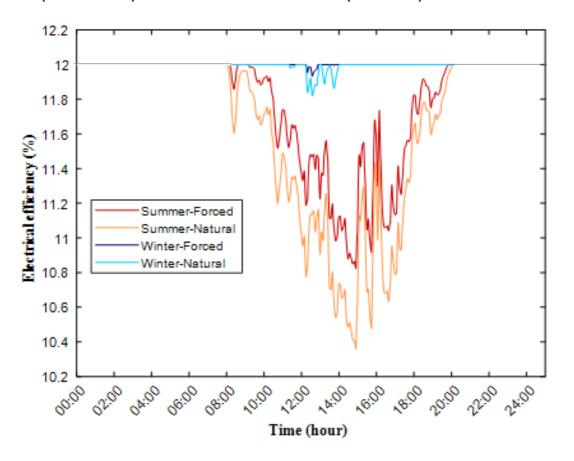


CIVIL-309 / LECTURE 11

EPFL Photovoltaics: Performance

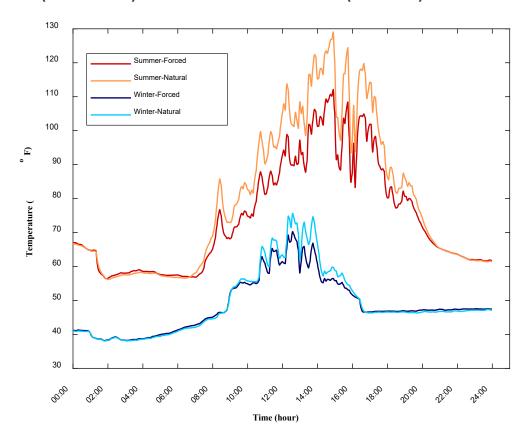
- PV electricity produced is driven by three factors:
 - Solar radiation received on the (tilted) surface of the panel: $K_{\perp} = S + D$
 - o PV surface area (A_{PV})
 - PV system efficiency including
 - PV panel efficiency (η_{PV})
 - Inverter efficiency (η_{inv})
 - Other losses (η_{losses})
- PV panel efficiency η_{PV} is a function of temperature. For typical mono- and poly- crystalline silicon panels, the performance reduces as temperature of the panel increases.

$$\boldsymbol{E_{PV}} = K_{\downarrow} \times A_{PV} \times \eta_{PV} \times \eta_{inv} \times \eta_{losses}$$
 (10-1)


$$\eta_{PV,e} = \eta_{PV,ref} + \gamma \times (T_{PV,actual} - T_{PV,ref})$$
(10-2)

 $\eta_{PV,ref}$ - rated efficiency of the PV panel at a reference temperature; $T_{PV,ref}$ - reference temperature (25°C) for rating efficiency of PVs; $T_{PV,actual}$ - actual temperature of the PV panel; γ - temperature coefficient of electrical power (W/K), $\gamma = -0.0004$ for typical polycrystalline panels)

PEPFL Performance of Ventilated BIPV Façades


Variation of the electrical efficiency of the PV panel

 (η_{PV}) in two representative days: **August 13**th (summer) and **December 14**th (winter) of 2019

Variation of the temperature of the PV panel

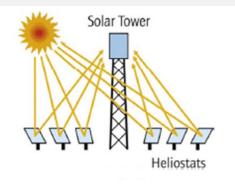
 (T_{PV}) in two representative days: **August 13**th (summer) and **December 14**th (winter) of 2019

CONTENT:

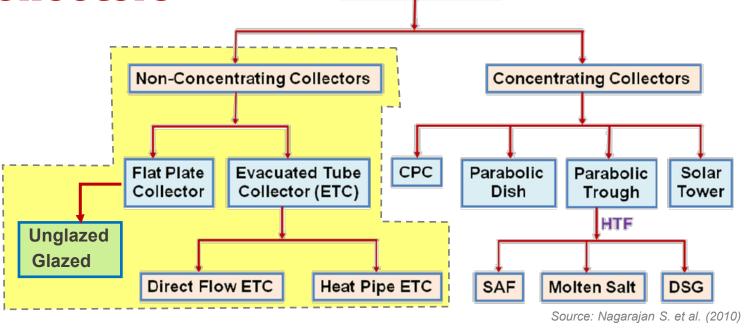
Urban Renewable Energy Sources

- Introduction
- Solar energy (PV and solar thermal)
- Wind energy
- Geothermal energy
- Hydropower
- Open issues

Urban renewable energy sources: Solar Thermal

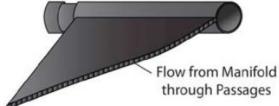


Assist. Prof. Dolaana Khovalyg


EPFL

Solar Thermal Collectors

Solar Tower



- Temperatures ~ 500-1000°C
- Concentration ratio $R \sim 100 - 1000$

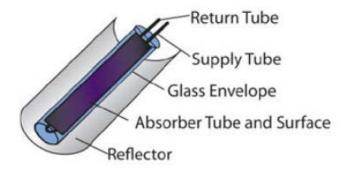
Solar Collectors

Extruded "Mat" with Flow Passages



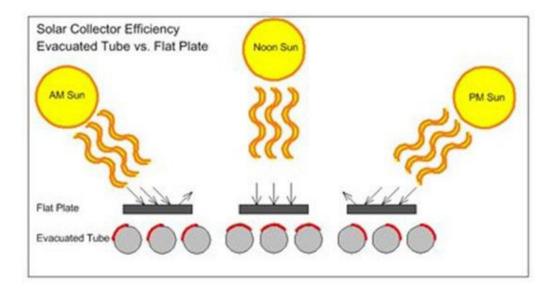
Unglazed Flat Plate

Top cover: EPDM, polypropylene, and polyolefin


- Temperatures ~ up to 55°C
- For swimming pools and pre-heating DHW

Glazed Flat Plate


- Temperatures ~ 80°C to 100°C
- Possible production of DHW at high T


Evacuated Tube

- Temperatures ~ up to 200°C
- Contribution to the production of DHW and space heating

Solar Thermal Collectors: Flat Plate vs. Evacuated

Characteristic	Flat Plate	Evacuated tube
Less expensive	✓	×
Easy snow removal	\checkmark	×
Efficiency less affected by the collector orientation	×	√
Collector efficiency is high at higher temperatures	*	\checkmark
Suitable for heating water up to high temperatures	×	✓
Better production in cold and cloudy climates	×	√
Heat losses are low	×	✓

Solar Thermal Collectors: Performance

- Concentration Ratio: ratio of the area of aperture of the system (projected area of the collector facing the beam) to the area of the receiver
- Temperature Range: range of temperature to which the heat-transport fluid is heated up by the collector
- Collector Efficiency: ratio of the energy actually absorbed and transferred to the heattransport fluid by the collector (useful energy) to the energy incident on the collector

Useful heat delivered by a solar collector

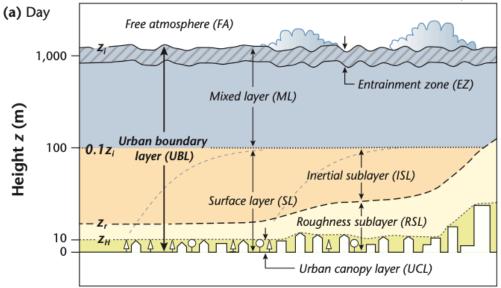
Energy absorbed by the heat transfer fluid

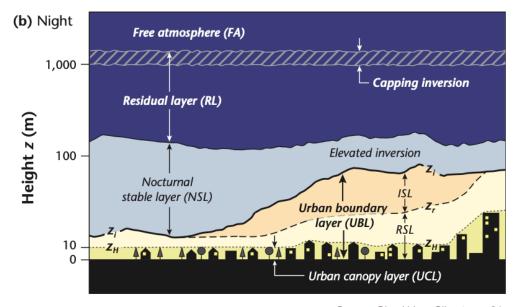
Heat losses to the surroundings

Collector Efficiencies of Various Liquid Collectors

CONTENT:

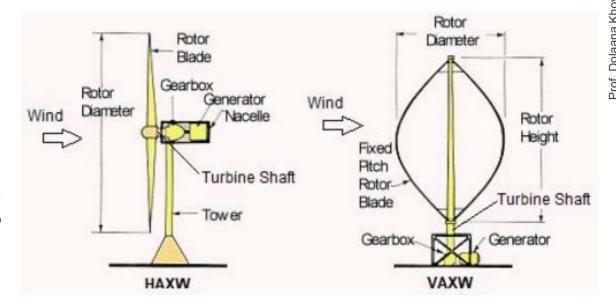
Urban Renewable Energy Sources


- Introduction
- Solar energy
- Wind energy
- Geothermal energy
- Hydropower
- Open issues


EPFL Atmospheric Boundary Layer

- The urban boundary layer is composed of two layers:
 - Surface layer (lower 10%)
 - Mixed layer (upper 90%)
- Surface layer: a layer with heat and mass exchanges between the Earth and its atmosphere. It is composed of 2 layers:
 - o Roughness sublayer (RSL) lower part affected by individuals elements, it is turbulent and 3D.
 - o **Inertial sublayer (ISL)** the *upper part* affected by assembles of individual elements, it varies mainly in the horizontal direction.
- Mixed layer: heat and mass exchange are dampened by turbulent motion; temperature, water vapor, wind speed are almost uniform with height

Source: Oke, Urban Climates, p. 31



EPFL

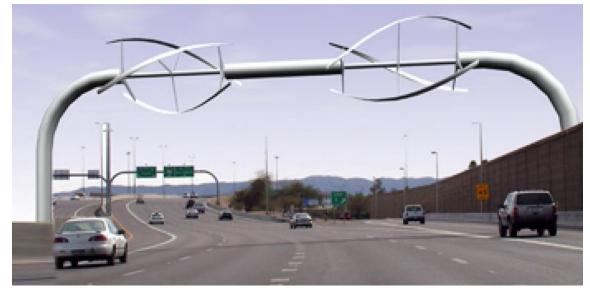
Urban renewable energy sources: Wind

- Two types of wind turbines:
 - HAWT: horizontal axis wind turbine
 - VAWT: vertical axis wind turbine
- Collecting wind energy in urban areas is a challenge, given the considerable variability in wind and its magnitude.

 VAWTs are better suited for urban areas. They are adapted for low speed wind and turbulent flow. They have less noise and vibration.

Positioning: stand-alone, retrofitted on buildings, architecturally integrated (building integrated wind turbines).

 Large scale applications and wind farms are challenging in cities due to the source viability depending on wind speed and building density.

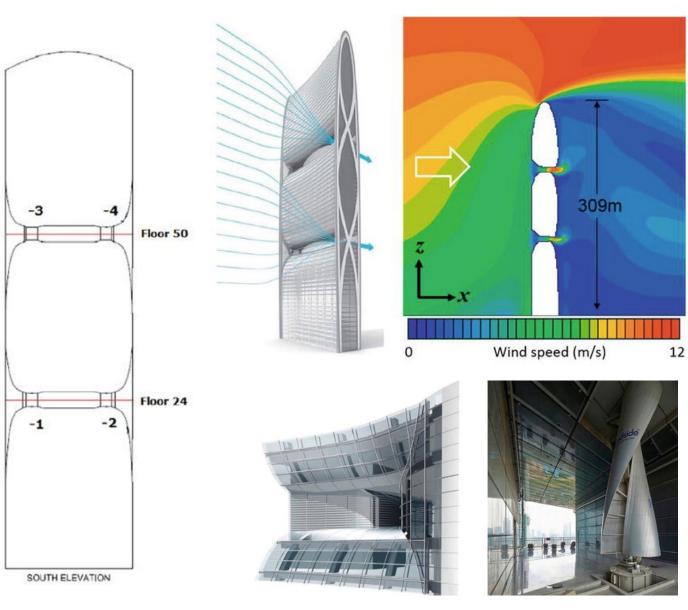


Urban renewable energy sources: Wind

EPFL Urban renewable energy sources: Wind

Strata SE1, London

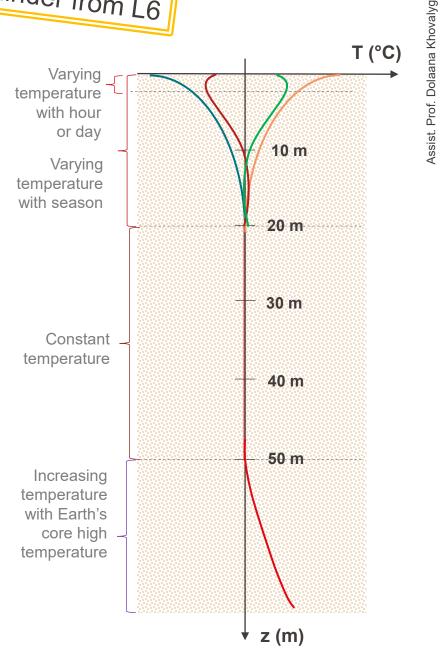
Bahrain World Trade Center


Perl River Tower, Guangzhou

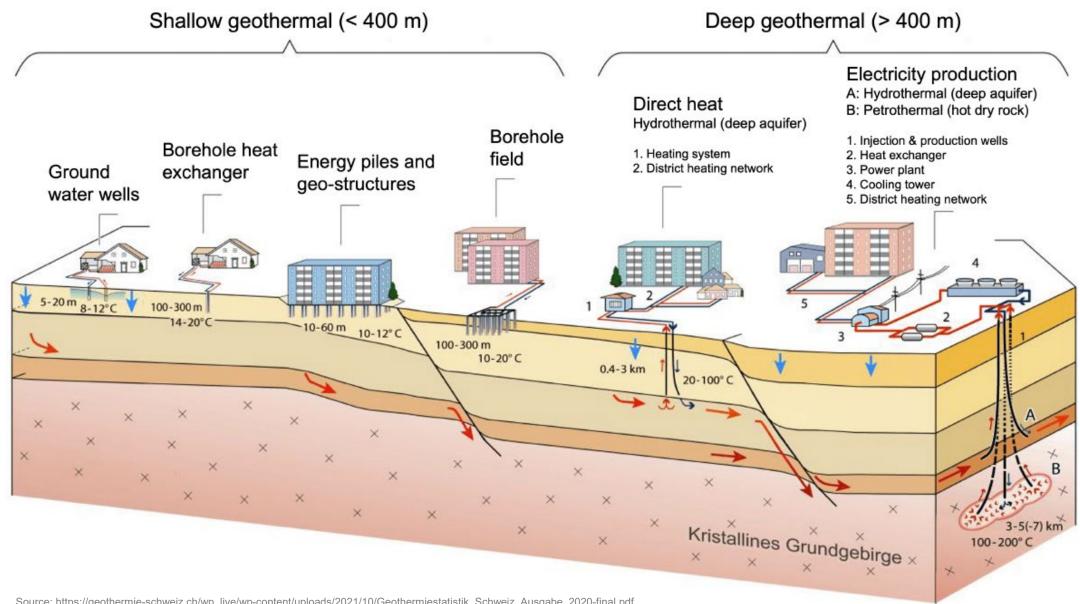
EPFL Urban renewable energy sources: Wind

Perl River Tower, Guangzhou

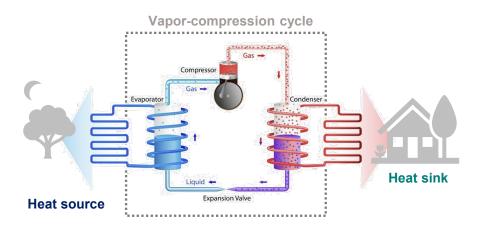
CONTENT:

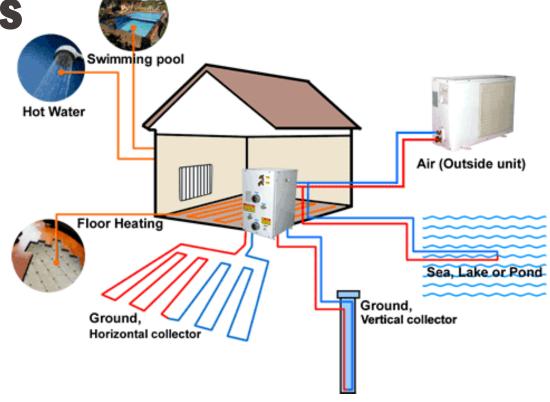

Urban Renewable Energy Sources

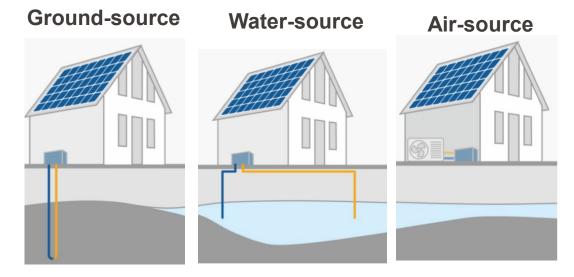
- Introduction
- Solar energy
- Wind energy
- Geothermal energy
- Hydropower
- Open issues


Sub-surface Temperature

- The sub-surface temperature varies along its depth:
 - Right below the surface, temperature varies with atmospheric conditions.
 - After a certain depth, the impact of the atmospheric conditions on temperature is negligible, ground temperature is constant. For Lausanne, it is ~14°C.
 - O Under 50 m below the surface, the ground temperature increases due to the geothermal heat flux from the Earth's core.
- Two types of ground sub-surface temperature variation:
 - Diurnal variation: up to 1 m under ground surface
 - Seasonal variation: up to 20 m under ground surface
- The ground sub-surface temperature depends on:
 - Surface energy balance affecting temperature variation up to 20 m depth
 - Thermo-physical properties of the soil (depends on the soil structure and composition, moisture content)

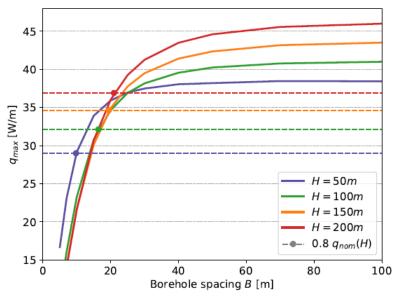


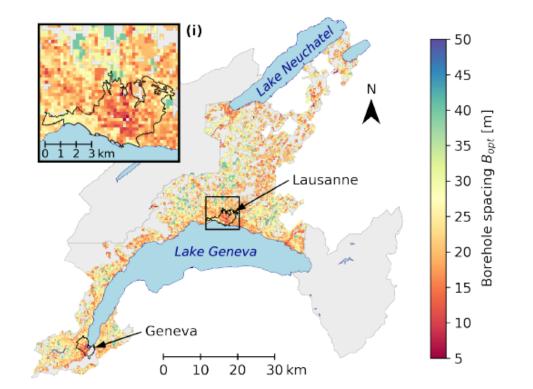

EPFL Urban renewable energy sources: **Geothermal**

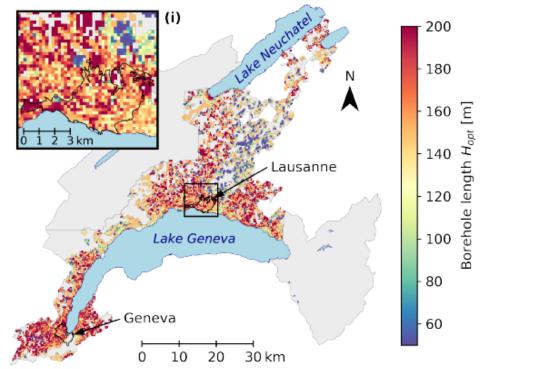


EPFL Ground-source Heat Pumps

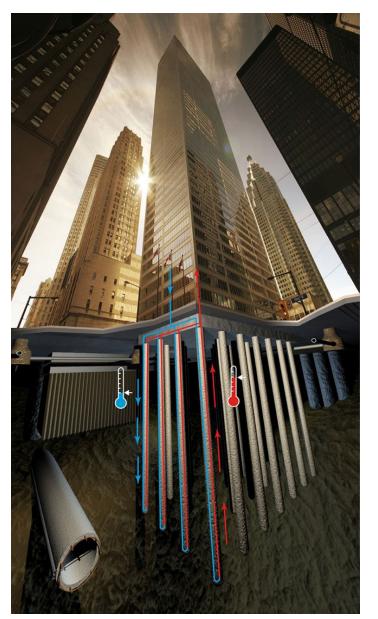
- HP is a system that convert the energy stored in the environment (air, ground or water) into usable heat using a vapor-compression cycle
- Usually, the heat extracted is delivered to heat up the water in order to be use either for space heating or domestic hot water (heat sinks)
- The *vapor compression* cycle is used for refrigeration, making use of the latent heat enabling large quantity of heat to be extracted for a given refrigerant mass flow rate.

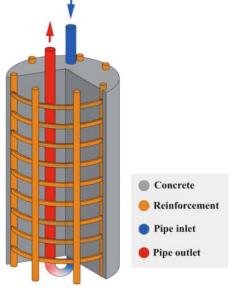


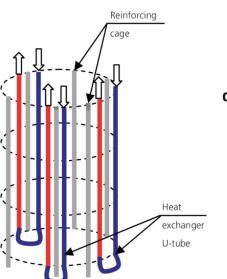


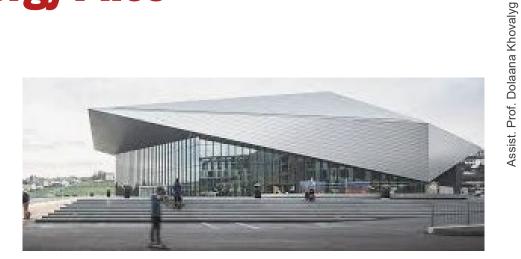


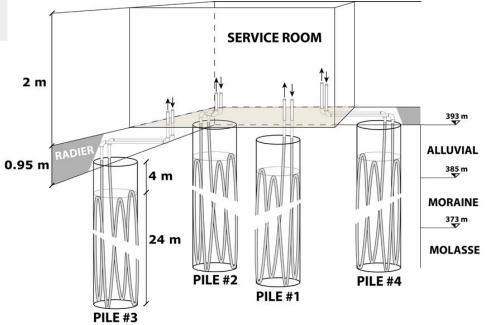
Assist. Prof. Dolaana Khovalyg


- The **heat extraction rate** from boreholes depends on the *spacing* between the boreholes (thermal interaction between them) and their *depth*.
 - Thermal resistance between boreholes reduces as log of distance
 - Heat extraction increases with the depth (higher ground temperature)








Shallow Geothermal Energy: Energy Piles

https://www.epfl.ch/labs/lms/thermopile-2/

EPFL

CONTENT:

Urban Renewable Energy Sources

- Introduction
- Solar energy
- Wind energy
- Geothermal energy
- **Hydropower**
- Open issues

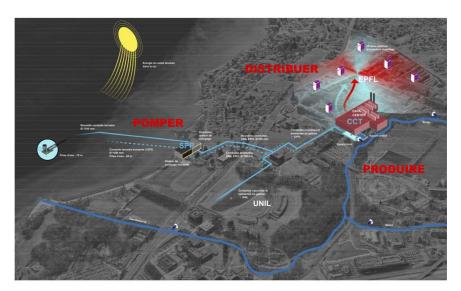
EPFL

Urban renewable energy sources: Hydropower

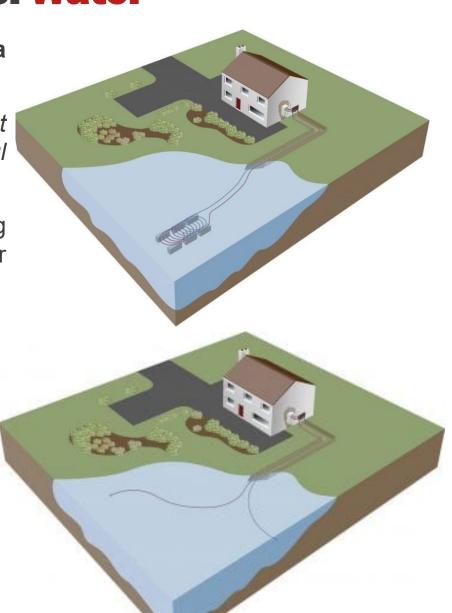
- Hydroelectric power exist at small scale and is still competitive with other power generation systems.
- Pumped storage is especially interesting to provide additional electrical power during peak consumption.
- New emerging technologies:
 - Inpipe hydropower: Piping systems
 produce an abundance of unused
 energy. Could be installed in water
 treatment plants, undergound water
 systems where water is highly
 pressured.
 - Mini-hydro power plants:
 Disadvantage of space requirements.

 Could encourage the presence of significant water bodies in cities.

Source: Comino, Mini-hydro power plant for the improvement of urban water-energy nexus toward sustainability


Urban renewable energy sources: Water

 Water bodies (lake, pond, river, sea) can be used as a heat source for heat pumps

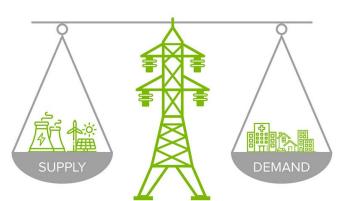

 Water-source heat pumps work by extracting heat from a body of water and converting in into useful energy to heat buildings.

 They use a series of submerged pipes containing a working fluid to absorb the heat from water bodies, but can also be as an open loop

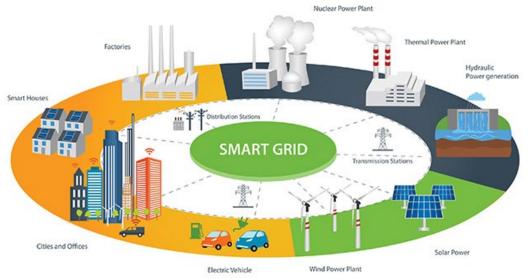
EPFL uses water-source heat pumps for its heating.

https://www.epfl.ch/about/sustainability/energy/central-heating-unit/

CONTENT:


Urban Renewable Energy Sources

- Introduction
- Solar energy
- Wind energy
- Geothermal energy
- Hydropower
- Open issues


Assist. Prof. Dolaana Khovalyg

EPFL Urban renewable energy sources: Open Issues

- Without land for industrial sites, small scale systems only produce small amount of energy.
- Renewable energy sources are not constant, hence a need for the combination of different sources.
- Power distribution grid must be adapted and flexible.
- Flexibility is the grid's ability to manage variability and volatility to balance supply and demand.
- Before thinking about production, necessary to reflect on consumption (demand profiles and shifting)

Thank you for your attention

Assist. Prof.
Dolaana Khovalyg
dolaana.khovalyg@epfl.ch